Effects of flow cell design on charge percolation and storage in the carbon slurry electrodes of electrochemical flow capacitors

نویسندگان

  • C. R. Dennison
  • M. Beidaghi
  • K. B. Hatzell
  • J. W. Campos
  • Y. Gogotsi
  • E. C. Kumbur
چکیده

The electrochemical flow capacitor (EFC) is an electrical energy storage concept recently introduced for grid-scale energy storage applications. The EFC utilizes flowable carbon-based electrodes as the active material in a flow battery type architecture for capacitive storage and recovery of energy. Charged slurry can be stored in external reservoirs until it is needed, enabling scalable energy storage to satisfy a variety of large-scale applications. Here, the capacitance and conductivity of EFC slurry electrodes were measured as a function of flow rate (from 0 to 10 ml min 1) and flow cell channel depth (electrode ‘thickness’, ranging from 0.5 to 3 mm). The effect of salt concentration in the electrolyte was also explored. The interfacial resistance associated with the current collectorjslurry interface was found to constitute a large portion of the total cell resistance. Bulk slurry conductivity was found to vary significantly with changes in electrolyte concentration, flow rate and channel depth. Very respectable capacitance values of up to w30 F ml 1 (150 F g 1) were obtained during intermittent flow operation. However, significant underutilization of the slurry due to increased ohmic losses at larger channel depths was observed, as evidenced by a rapid decay in capacitance with increasing channel depth. 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Hydroxylated Carbon Felt Electrode in Vanadium Redox Flow Battery by Using Optimized Supporting Electrolyte

Traditional vanadium batteries use pure sulfuric acid as electrolyte, but H2SO4 does not absorb enough vanadium ions to make the electrolyte an efficient energy source. This study investigates the effect of hydroxylation process on electrochemical and operational properties of carbon felt electrode in VOSO4 solution with an optimized supporting electrolyte (a mixture of six parts HCl and 2.5 pa...

متن کامل

Modeling the Effects of Electrode Composition and Pore Structure on the Performance of Electrochemical Capacitors

This work presents a mathematical model for charge/discharge of electrochemical capacitors that explicitly accounts for particlepacking effects in a composite electrochemical capacitor consisting of hydrous RuO2 nanoparticles dispersed within porous activated carbon. The model is also used to investigate the effect of nonuniform distributions of salt in the electrolyte phase of the electrode in...

متن کامل

Comparison of Binary and Ternary ‎Compositions of Ni-Co-Cu Oxides/VACNTs ‎Electrodes for Energy Storage Devices with ‎Excellent Capacitive Behaviour

   Electrochemical performance of binary and ternary oxides composed of Ni, Co and Cu produced over a 3-dimensional substrate of vertically aligned carbon nano-tubes (VACNT) as electrodes for aqueous energy sources, is reported and compared in this paper. VACNTs were fabricated inside a DC-plasma enhanced chemical vapor deposition chamber and composite materials fabricated by thermal decomp...

متن کامل

Integration of a Vanadium Redox Flow Battery with a Proton Exchange Membrane Fuel Cell as an Energy Storage System

The proton exchange membrane (PEM) fuel cell is a green energy producer which converts chemical energy to electricity in high yield. Alternatively, the vanadium redox flow battery (VRB) is one of the best rechargeable batteries because of its capability to average loads and output power sources. These two systems are modeled by Nernst equation and electrochemical rules. An effective energy gene...

متن کامل

A Numerical Simulation of Vanadium Redox Flow Batteries

The recent penetration of renewable sources in the energy system caused a transformation of the needs of the distribution system and amplified the need of energy storage systems to properly balance the electricity grid. Among electrochemical energy storage devices, all vanadium flow batteries are those of the most promising technologies due to their high efficiency, long lifetime, reliability a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013